A man standing on the bank of river observes that the angle subtended by a tree on the opposite bank is 60o. When he retires 36 m from the bank, he finds that the angle is 30o. The breadth of the river is
Given : CD is the tree = $$h$$ m and AB = 36 m
To find : DB = $$x$$ = ?
Solution : In $$\triangle$$ BCD,
=> $$tan(60^\circ)=\frac{CD}{DB}$$
=> $$\sqrt{3}=\frac{h}{x}$$
=> $$h=x\sqrt{3}$$ -----------(i)
Again, in $$\triangle$$ ACD,
=> $$tan(30^\circ)=\frac{CD}{AD}$$
=> $$\frac{1}{\sqrt{3}}=\frac{x\sqrt3}{x+36}$$ Â Â [Using (i)]
=> $$x+36=(x\sqrt{3})\times \sqrt3=3x$$
=> $$3x-x=2x=36$$
=> $$x=\frac{36}{2}=18$$ m
=> Ans - (B)
Create a FREE account and get: