If x and y are real numbers, then the least possible value of $$4(x - 2)^2 + (y - 3)^2 - 2(x - 3)^2$$ is:
Expression :Â $$Z=4(x - 2)^2 + (y - 3)^2 - 2(x - 3)^2$$
Minimum value of a square term is 0, thus $$y=3$$
Now, if $$x>2$$ or $$x<0$$ then the term will be positive.
Case I : $$x=0$$ and $$y=3$$
=> $$Z=16+0-18=-2$$
Case II : $$x=1$$ and $$y=3$$
=> $$Z=4+0-8=-4$$
Case III : $$x=2$$ and $$y=3$$
=> $$Z=0+0-2=-2$$
$$\therefore$$ Minimum value of expression =Â -4
=> Ans - (B)
Create a FREE account and get: