The numerical values of the volume and curved surface area of a cone are equal. If '$$h$$' and '$$r$$' represent the height and base radius of the cone, then what is the value of $$\left(\frac{1}{h^2}\right) + \left(\frac{1}{r^2}\right)$$?
given thatÂ
vol of cone = curved surface area of cone
$$\pi\times r^2\frac{h}{3}= \pi\times r\times l$$
$$r\times\frac{h}{3} = l$$ .....(1)
given that
$$\left(\frac{1}{h^2}\right) + \left(\frac{1}{r^2}\right)$$
= $$\frac{r^2 + h^2}{h^2\times r^2}$$...(2)
as we know that
$$\frac{r^2 + h^2}$$ = $$l^2$$ ....(3)
put (1) and (3) in (2)
$$\frac{r^2 + h^2}{h^2\times r^2}$$
$$\frac{l^2}{(3\times l)^2} $$
$$\frac{l^2}{9\times l^2}$$
=Â $$\frac{1}{9}$$
Create a FREE account and get: