Question 54

If $$\cos \theta = \frac{2p}{1 + p^2}$$, then $$\tan \theta$$ is equal to:

Solution

Given that,

$$\cos \theta = \frac{2p}{1 + p^2}$$

$$\sin \theta=\sqrt{1-\cos^2\theta}=\sqrt{1-(\frac{2p}{1 + p^2})^2}=\sqrt{\dfrac{(1+p^2)^2-4p^2}{(1+p^2)^2}}$$

$$\sin \theta=\sqrt{\dfrac{1+p^4+2p^2-4p^2}{(1+p^2)^2}}=\sqrt{\dfrac{1+p^4-2p^2}{(1+p^2)^2}}=\sqrt{\dfrac{(1-p^2)^2}{(1+p^2)^2}}=\dfrac{1-p^2}{1+p^2}$$

So, $$\tan \theta=\dfrac{\dfrac{1-p^2}{1+p^2}}{ \frac{2p}{1 + p^2}}=\dfrac{1-p^2}{2p}$$


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App