Given : $$p=3+\frac{1}{p}$$
=>Â $$p-\frac{1}{p}=3$$
Squaring both sides,
=>Â $$(p-\frac{1}{p})^2=(3)^2$$
=> $$p^2+\frac{1}{p^2}-2(p)(\frac{1}{p})=9$$
=> $$p^2+\frac{1}{p^2}-2=9$$
=> $$p^2+\frac{1}{p^2}=9+2=11$$
Again squaring both sides, we get :
=> $$(p^2+\frac{1}{p^2})^2=(11)^2$$
=> $$p^4+\frac{1}{p^4}+2(p^2)(\frac{1}{p^2})=121$$
=> $$p^4+\frac{1}{p^4}=121-2=119$$
=> Ans - (D)
Create a FREE account and get: