Question 63

If $$a^{2}+b^{2}-c^{2}=0$$, then the value of $$\frac{2(a^{6}+b^{6}-c^{6})}{3a^{2}b^{2}c^{2}}$$ is:

Solution

If a + b + c  = 0 then $$a^3 + b^3 + c^3 = 3abc$$ so,

$$a^{6}+b^{6}-c^{6} = 3a^2b^2c^2$$

$$\frac{2(a^{6}+b^{6}-c^{6})}{3a^{2}b^{2}c^{2}}$$

= $$\frac{2(3a^{2}b^{2}c^{2})}{3a^{2}b^{2}c^{2}}$$ = 2


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App