If $$a^{2}+b^{2}-c^{2}=0$$, then the value of $$\frac{2(a^{6}+b^{6}-c^{6})}{3a^{2}b^{2}c^{2}}$$ is:
If a + b + c = 0 then $$a^3 + b^3 + c^3 = 3abc$$ so,
$$a^{6}+b^{6}-c^{6} = 3a^2b^2c^2$$
$$\frac{2(a^{6}+b^{6}-c^{6})}{3a^{2}b^{2}c^{2}}$$
=Â $$\frac{2(3a^{2}b^{2}c^{2})}{3a^{2}b^{2}c^{2}}$$ = 2
Create a FREE account and get: