If $$x=\sqrt[3]{28},y=\sqrt[3]{27}$$, then the value of $$x+y-\frac{1}{x^2+xy+y^2}$$ is
Given : $$x=\sqrt[3]{28},y=\sqrt[3]{27}$$
=> $$x^3=28$$ and $$y^ 3=27$$ ----------(i)
=> $$y=3$$ -----------(ii)
To find : $$x+y-\frac{1}{x^2+xy+y^2}$$
= $$(x+y)-(\frac{(x-y)}{(x-y)(x^2+xy+y^2)})$$ Â Â [Multiply and divide by $$(x-y)$$]
Using, $$(x-y)(x^2+xy+y^2)=(x^3-y^3)$$
= $$(x+y)-(\frac{x-y}{x^3-y^3})$$
= $$(x+y)-(\frac{x-y}{28-27})$$ Â Â [Using (i)]
= $$(x+y)-(x-y)=2y$$
= $$2 \times 3=6$$ Â Â [Using (ii)]
=> Ans - (C)
Create a FREE account and get: