Question 66

If $$X^4+\frac{1}{X^4}=119$$, then the value of $$X-\frac{1}{X}$$ is

Solution

We haveĀ $$x^4+\frac{1}{x^4}\ =\ 119$$
we getĀ $$x^4+\frac{1}{x^4}+2=\ 121$$
so we getĀ $$\left(x^2+\frac{1}{x^2}\right)^{^2}=\ 121$$
we getĀ $$x^2+\frac{1}{x^2}=\ 11$$
so we getĀ $$x^2+\frac{1}{x^2}-2\ =\ 9$$
so we get $$\left(x-\frac{1}{x}\right)^{^2}=\ 9$$
so we get $$x-\frac{1}{x}=\ 3$$


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App