Question 67

In a triangle PQR, PQ = PR and ∠Q is twice that of ∠P. Then ∠Q is equal to

Solution

PQ = PR, => $$\triangle$$ PQR is an isosceles triangle with $$\angle$$ Q = $$\angle$$ R

Let $$\angle$$ P = $$\theta$$

=> $$\angle$$ Q = $$\angle$$ R = $$2\theta$$

In $$\triangle$$ PQR,

=> $$\angle$$ P + $$\angle$$ Q + $$\angle$$ R = $$180^\circ$$

=> $$\theta+2\theta+2\theta=180^\circ$$

=> $$5\theta=180^\circ$$

=> $$\theta=\frac{180}{5}=36^\circ$$

$$\therefore$$ $$\angle$$ Q = $$2 \times 36=72^\circ$$

=> Ans - (A)


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App