Given
$$a + \frac{1}{a}$$ = 3
using the formula $$(a+b)^2$$ = $$a^2 + b^2+ 2 × a × b $$
$$(a + \frac{1}{a})^2$$ = $$\left(a^2 + \frac{1}{a^2}\right)$$ + $$ 2 $$ × $$a × \frac{1}{a}$$
$$3^2$$ = $$\left(a^2 + \frac{1}{a^2}\right)$$ + 2
$$\left(a^2 + \frac{1}{a^2}\right)$$ = 9 - 2
$$\left(a^2 + \frac{1}{a^2}\right)$$ = 7
again use the same formula to the above solutions we can get final answer $$(a+b)^2$$ = $$a^2 + b^2+ 2 × a × b $$
$$\left(a^2 + \frac{1}{a^2}\right)^2$$ = $$\left(a^4 + \frac{1}{a^4}\right)$$+ $$ 2 $$ × $$a^2 × \frac{1}{a^2}$$
$$7^2$$ = $$\left(a^4 + \frac{1}{a^4}\right)$$ + 2
$$49-2$$ = $$\left(a^4 + \frac{1}{a^4}\right)$$
therefore $$\left(a^4 + \frac{1}{a^4}\right)$$ = $$47$$
Create a FREE account and get: