If $$5 \sin \theta = 4$$, then the value of $$\frac{\sec \theta + 4 \cot \theta}{4 \tan \theta - 5 \cos \theta}$$ is:
$$5 \sin \theta = 4$$
$$\sin \theta = 4/5$$
$$\frac{perpendicular}{hypotenuses} = \frac{4}{5}$$
By triplet 3-4-5,
Base = 3
$$cos\theta = base/hypotenuses = 3/5$$
$$tan\theta = perpendicular/base = 4/3$$
$$\frac{\sec \theta + 4 \cot \theta}{4 \tan \theta - 5 \cos \theta}$$
=Â $$\frac{\frac{1}{\cos \theta} +Â Â \frac{4}{\tan \theta}}{4 \tan \theta - 5 \cos \theta}$$
= $$\frac{\frac{1}{3/5} + \frac{4}{4/3}}{4 \times 4/3 - 5 \times 3/5}$$
= $$\frac{\frac{5}{3} + 3}{4 \times 4/3 - 5 \times 3/5}$$
= $$\frac{\frac{14}{3}}{\frac{16}{3} - 3}$$
= $$\frac{14}{7}$$ = 2
Create a FREE account and get: