If the angle of elevation of a cloud from a point 200 m above a lake is 30° and the angle of depression of its reflection in the lake is 60°. Then the height of the cloud above the lake is
Given : F is the reflection of cloud at point A and CE = 200 m
To find : AE = ?
Solution : In $$\triangle$$ ABC,
=> $$tan(30^\circ)=\frac{AC}{BC}$$
=> $$\frac{1}{\sqrt3}=\frac{x}{BC}$$
=> $$BC=x\sqrt3$$ -------------(i)
Similarly, in $$\triangle$$ BCF,
=> $$tan(60^\circ)=\frac{CF}{BC}$$
=> $$\sqrt3=\frac{x+200+200}{x\sqrt3}$$ [Using (i)]
=> $$3x=x+400$$
=> $$3x-x=2x=400$$
=> $$x=\frac{400}{2}=200$$ m
$$\therefore$$ AE = AC + CE
= $$200+200=400$$ m
=> Ans - (D)
Create a FREE account and get: