If a and b are the roots of the equation $$3x^2 - 5x + 2 = 0$$, then find the value of $$\left(\frac{a}{b}\right) + \left(\frac{b}{a}\right)$$.
$$3x^2 - 5x + 2 = 0$$
this a quadratic equation
$$ax^2 - bx + c = 0$$
here,
a=3
b=-5
c =2
take lcm of 3,2 =6
$$3x^2 - 5x + 2 = 0$$ by doing middle term factorization
$$3x^2 - 3x -2x + 2 = 0$$
$$3x(x-1)Â -2(x-1) = 0$$
x-1,3x-2
so, x=1,x=$$\frac{2}{3}$$
 a=1,b=$$\frac{2}{3}$$
$$\left(\frac{a}{b}\right) + \left(\frac{b}{a}\right)$$
$$\left(\frac{1}{\frac{2}{3}}\right) + \left(\frac{\frac{2}{3}}{1}\right)$$
$$\left(\frac{3}{2}\right) + \left(\frac{2}{3}\right)$$
$$\frac{13}{6}$$
Create a FREE account and get: