In ΔABC, AD is the median and AD = (1/2)BC. If ∠ACD = 40°, then what is the value (in degrees) of ∠DAB?
AD = (1/2)BC and AD is the median which bisects BC at D, => AD = BD = CD
=> $$\triangle$$ ADC and $$\triangle$$ ABD are isosceles triangles.
Let $$\angle$$ ACD = $$\angle$$ CAD = $$\theta=40^\circ$$ -------------(i)
=> $$\angle$$ ADC = $$(180$$°$$ - 2 \theta)$$
Now, $$\angle$$ ADB and $$\angle$$ ADC are supplementary
=> $$\angle$$ ADB + $$\angle$$ ADC = 180°
=> $$\angle$$ ADB = $$180$$°$$ - (180$$°$$ - 2 \theta) = 2 \theta$$
Also, $$\angle$$ ABD = $$\angle$$ BAD = $$x$$
In $$\triangle$$ ABD, => $$\angle$$ ABD + $$\angle$$ BAD + $$\angle$$ ADB = 180°
=> $$x + x + 2 \theta = 180$$°
=> $$2(x + \theta) = 180$$°
=> $$x + 40^\circ = \frac{180}{2}=90^\circ$$ [Using equation (i)]
=> $$x=90-40=50^\circ$$
=> Ans - (C)
Create a FREE account and get: