Consider an expanding sphere of instantaneous radius R whose total mass remains constant. The expansion is such that the instantaneous density $$\rho$$ remains uniform throughout the volume. The rate of fractional change in density $$(\frac{1}{\rho}\frac{d\rho}{dt})$$ is constant. The velocity $$\nu$$ of any point on the surface of the expanding sphere is proportional to
Create a FREE account and get: