Question 100

Let $$t_{1},t_{2}$$,... be real numbers such that $$t_{1}+t_{2}+…+t_{n} = 2n^{2}+9n+13$$, for every positive integer $$n \geq 2$$. If $$t_{k}=103$$, then k equals


Correct Answer: 24

Solution

It is given that $$t_{1}+t_{2}+…+t_{n} = 2n^{2}+9n+13$$, for every positive integer $$n \geq 2$$. 

We can say that $$t_{1}+t_{2}+…+t_{k} = 2k^{2}+9k+13$$   ... (1) 

Replacing k by (k-1) we can say that 

 $$t_{1}+t_{2}+…+t_{k-1} = 2(k-1)^{2}+9(k-1)+13$$   ... (2)

On subtracting equation (2) from equation (1)

$$\Rightarrow$$ $$t_{k} = 2k^{2}+9k+13 - 2(k-1)^{2}+9(k-1)+13$$

$$\Rightarrow$$ $$103 = 4k+7$$

$$\Rightarrow$$ $$k = 24$$

Video Solution

video

Create a FREE account and get:

  • All Quant CAT complete Formulas and shortcuts PDF
  • 35+ CAT previous year papers with video solutions PDF
  • 5000+ Topic-wise Previous year CAT Solved Questions for Free

cracku

Boost your Prep!

Download App