If $$x,y,z \neq 0$$ and $$\frac{1}{x^{2}}+\frac{1}{y^{2}}+\frac{1}{z^{2}}$$ = $$\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}$$ then the relation among x, y, z is
Expression : $$\frac{1}{x^{2}}+\frac{1}{y^{2}}+\frac{1}{z^{2}}$$ = $$\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}$$
Taking L.C.M on both sides
= $$\frac{x^2 + y^2 + z^2}{x^2 y^2 z^2} = \frac{xy + yz + zx}{x^2 y^2 z^2}$$
= $$x^2 + y^2 + z^2 - xy - yz - zx = 0$$
= $$\frac{1}{2} [(x-y)^2 + (y-z)^2 + (z-x)^2] = 0$$
=> $$(x = y)$$ and $$(y = z)$$ and $$(z = x)$$
=> $$x = y = z$$
Create a FREE account and get: