a sinθ + b cosθ = c
on squaring both sides , we get
$$a^2 sin^2 \theta$$ + $$b^2 cos^2 \theta$$ + 2 a b $$sin \theta cos \theta$$ = $$c^2$$ ...............(1)
We need to find value of : a sinθ - b cosθ.....(2)
So, on squaring both sides of equation 2,we get
( a cosθ - b sinθ)$$^2$$ = $$a^2 cos^2 \theta$$ + $$b^2 sin^2 \theta$$ - 2 a b $$cos \theta sin \theta$$......(3)
Adding equation 1 and 3, we can say
c$$^2$$ + (a cos θ - b sin θ)$$^2$$ = $$a^2 cos^2 \theta$$ + $$b^2 sin^2 \theta$$ + $$a^2 sin^2 \theta$$ + $$b^2 cos^2 \theta$$
c$$^2$$ + (a cos θ - b sin θ)$$^2$$ = $$a^2 cos^2 \theta$$ + $$b^2 sin^2 \theta$$ + $$a^2 sin^2 \theta$$ + $$b^2 cos^2 \theta$$
c$$^2$$ + (a cos θ - b sin θ)$$^2$$ = $$a^2 cos^2 \theta$$ + $$a^2 sin^2$$ + $$b^2 cos^2 \theta$$ + $$b^2 sin^2$$
c$$^2$$ + ( a cos θ - b sin θ)$$^2$$ = $$a^2 + b^2 $$
(a cos θ - b sin θ)$$^2$$ = $$a^2 + b^2 $$ - c$$^2$$
( a cos θ - b sin θ) = $$\pm\sqrt{a^{2}+b^{2}-c^{2}}$$
Create a FREE account and get: