Question 114

The inequality of p$$^2$$ + 5 < 5p + 14 can be satisfied if:

Solution

We have, p$$^2$$ + 5 < 5p + 14

=> p$$^2$$ - 5p - 9 < 0

=> p< $$\ \frac{\ 5\ +\ \sqrt{\ 61}}{2}$$ or p> $$\ \frac{\ 5\ -\ \sqrt{\ 61}}{2}$$ 

=> p<6.4 or p>-1.4

Hence, p ≤ 6, p > −1 will satisfy the inequalities

Video Solution

video

Create a FREE account and get:

  • All Quant Formulas and shortcuts PDF
  • 170+ previous papers with solutions PDF
  • Top 5000+ MBA exam Solved Questions for Free

cracku

Boost your Prep!

Download App