Sign in
Please select an account to continue using cracku.in
↓ →
A right circular cone of largest volumeis cut out from a solid wooden hemisphere. The remaining material is what percentage of the volume ofthe original hemisphere?
The volume of hemisphere = $$\dfrac{2}{3} \pi r^3 $$
volume of cone = $$ \dfrac{1}{3} \pi r^2 h $$
where r = h
volume of cone = $$\dfrac{1}{3} \pi r^2 r - \dfrac{1}{3} \pi r^3 $$
so volume of remaining = $$ \dfrac{2}{3} \pi r^3 - \dfrac{1}{3} \pi r^3 $$
$$\Rightarrow \dfrac{1}{3} \pi r^3 $$
% of remaining material =$$ \dfrac{\dfrac{1}{3}\pi r^3} {\dfrac{2}{3} \pi r^3} \times 100 $$
$$\Rightarrow \dfrac{1}{2} \times 100 $$
$$\Rightarrow 50 Ans %
Create a FREE account and get: