Question 133

If $$2^{36} - 1 = 68 a$$ 19476735, when all the digits are correct except a, the correct value of a is

Solution

Expression : $$(2)^{36}-1$$

= $$(2^3)^{12}-1=(8)^{12}-1$$

Now, to check whether the number is divisible by 9, we have : $$(-1)^{12}-1=0$$

Thus, $$(2)^{36}-1$$ is divisible by 9, hence sum of its digits is also divisible by 9.

=> $$6+8+a+1+9+4+7+6+7+3+5=56+a$$

Thus, $$56+a=63$$

=> $$a=7$$

=> Ans - (C)


cracku

Boost your Prep!

Download App