Question 14

If $$x = 2 +\surd3, y = 2 - \surd3$$ and $$z = 1$$, then what is the value of $$\left(\frac{x}{yz}\right) + \left(\frac{y}{xz}\right) + \left(\frac{z}{xy}\right) + 2 \left[\left(\frac{1}{x}\right) + \left(\frac{1}{y}\right) + \left(\frac{1}{z}\right)\right]$$?

Solution

$$x = 2 +\surd3, y = 2 - \surd3$$ 
$$(1/x)=(2 - \surd3)$$
$$(1/y)=(2 +\surd3)$$

$$(\frac{x}{yz}$$=$$(2 +\surd3)/(2 -\surd3)$$

=$$(2 +\surd3)^{2}$$

$$(\frac{y}{xz}$$=$$(2 - \surd3)/((2 +\surd3))$$

=$$(2 -\surd3)^{2}$$

$$(\frac{z}{xy}$$=1

$$(\frac{x}{yz} + \left(\frac{y}{xz}\right) + \left(\frac{z}{xy}\right) + 2 \left[\left(\frac{1}{x}\right) + \left(\frac{1}{y}\right) + \left(\frac{1}{z}\right)\right]$$

=$$(2 +\surd3)^{2} +(2 -\surd3)^{2}+1+2(2 - \surd3+2 + \surd3+1)$$
=14+1+2(5)
=14+1+10
=245


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App