Which of the following relation is CORRECT?
I. $$(\sqrt{15}+\sqrt{7})<(2\sqrt{22})$$
II. $$(\sqrt{17}+\sqrt{5})<(\sqrt{20}+\sqrt{2})$$
IÂ : $$(\sqrt{15}+\sqrt{7})<(2\sqrt{22})$$
Squaring both sides, we get :
L.H.S. = $$(\sqrt{15}+\sqrt{7})^2=15+7+2\sqrt{105}=(22+2\sqrt{105})\approx(22+2\times10)=42$$
R.H.S. = $$(2\sqrt{22})^2=88$$
Thus, L.H.S. < R.H.S., which is correct.
IIÂ : $$(\sqrt{17}+\sqrt{5})<(\sqrt{20}+\sqrt{2})$$
Squaring both sides, we get :
L.H.S. = $$(\sqrt{17}+\sqrt{5})^2=17+5+2\sqrt{85}=(22+2\sqrt{85})$$
R.H.S. = $$(\sqrt{20}+\sqrt{2})^2=20+2+2\sqrt{40}=(22+2\sqrt{40})$$
$$\because$$ $$\sqrt{85}>\sqrt{40}$$, then L.H.S. > R.H.S.
Thus, only I is correct.
=> Ans - (A)
Create a FREE account and get: