$$\alpha$$ and $$\beta$$ are the roots of the quadratic equation $$x^2 - x - 1 = 0$$. What is the value of $$\alpha^2 + \beta^2$$?
We know ,For a quadratic equation $$ax^2+bx+c=0$$, Sum of roots= $$-\frac{b}{a}$$ and Product of roots= $$\frac{c}{a}\ .$$
So, According to question,
$$\alpha\ +\beta\ =-\frac{\left(-1\right)}{1}=1\ .$$
And, $$\alpha\beta\ =\frac{-1}{1}=-1\ .$$
So, $$\alpha^2+\beta^2=\left(\alpha\ +\beta\ \right)^2-2\alpha\beta=1-2\times\left(-1\right)=3\ .$$
A is correct choice.
Create a FREE account and get: