What number must be added to the expression $$16a^2 - 12a$$ to make it a perfect square?
$$16a^2 - 12a$$ = $$\left(4a\right)^2-\left(2\right)\left(4a\right)\left(\ \frac{\ 3}{2}\right)$$
by adding $$\left(\ \frac{\ 3}{2}\right)^2\ $$ we can write it as $$\left(\ 4a-\frac{\ 3}{2}\right)^2\ $$
Hence $$\left(\frac{\ 3}{2}\right)^2\ =\ \ \frac{\ 9}{4}$$ is required answer
Create a FREE account and get: