Arrange the following in descending order.
$$\sqrt[4]{5},\sqrt[3]{4}$$ and $$\sqrt[4]{6}$$
Terms : $$\sqrt[4]{5},\sqrt[3]{4}$$ and $$\sqrt[4]{6}$$
Multiplying the exponents by L.C.M. (4,3,4) = 12
=> $$(5)^{\frac{12}{4}}$$ , $$(4)^{\frac{12}{3}}$$ and $$(6)^{\frac{12}{4}}$$
= $$5^3,4^4,6^3$$
= $$125,256,216$$
Thus, in descending order = $$256>216>125$$
$$\equiv$$Â $$\sqrt[3]{4}>\sqrt[4]{6}>\sqrt[4]{5}$$
=> Ans - (D)
Create a FREE account and get: