Question 2

Three fractions $$x, y$$ and $$z$$  are such that $$x > y > z$$.When small of them divided by the greatest, the result is $$\frac{9}{16}$$, which exceeds $$y$$ by 0.0625.If $$x + y + z = 1 \frac{13}{24}$$,then the value of $$x + z$$ is

Solution

$$\frac{z}{x} = \frac{9}{16}$$
$$\frac{9}{16} = y + 0.00625$$
y = $$\frac{1}{z}$$
x + y + z = $$1 \frac{13}{24}$$
x + $$\frac{1}{z} + z = \frac{37}{24}$$
x + z = $$\frac{37}{24} - \frac{12}{24} = \frac{25}{14}$$


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App