What is the value of $$x^4 + y^4$$ when the value of $$x^3+y^3 = 8$$ and $$x + y = 2$$?
Given : $$x^3+y^3=8$$ -----------(i)
and $$x+y=2$$ ------------(ii)
Cubing both sides, we get :
=> $$(x+y)^3=(2)^3$$
=> $$x^3+y^3+3xy(x+y)=8$$
Substituting values from equations (i) and (ii),
=> $$8+3xy(2)=8$$
=> $$6xy=8-8=0$$
=> $$xy=0$$ -----------(iii)
Now, squaring equation (ii), => $$(x+y)^2=(2)^2$$
=> $$x^2+y^2+2xy=4$$
=> $$x^2+y^2=4$$ Â Â Â $$[\because xy=0]$$
Similarly, again squaring both sides, we get :
=> $$x^4+y^4+2x^2y^2=16$$
=>Â $$x^4+y^4+2(xy)^2=16$$
=> $$x^4+y^4=16$$
=> Ans - (C)
Create a FREE account and get: