Find $$2 \circledast 3$$, where $$2\circledast 3$$ need not be equal to $$3\circledast2$$
I. $$1 \circledast 2$$=3
II. $$a \circledast b=\frac{a+b}{a}$$, where a and b are positive.
The definition of the given function is expressed in statement 2, where $$a \circledast b=\frac{a+b}{a}$$
Hence $$2\circledast3=\frac{2+3}{2}$$.
Hence the answer can be determined by b alone. A does not give any releant information.
Create a FREE account and get: