Using $$A.M.\ge\ G.M.$$
$$\frac{\left(4^{\sin x}+4^{\cos x}\right)}{2}\ge\ \sqrt{\ 4^{\sin x+\cos x}}$$
For minimum value $$\left(4^{\sin x}+4^{\cos x}\right)=2\ \sqrt{\ 4^{\sin x+\cos x}}$$.
The minimum value of sinx +cosx when x lies in R is $$-\sqrt{\ 2}$$
Thus, the minimum value of the expression is $$2^{1-\sqrt{\ 2}}$$
Create a FREE account and get: