Question 39

If $$\log_{2}{\log_{7}{(x^2 - x+37)}}$$ = 1, then what could be the value of ‘x’?

Solution

$$\log_{2}{\log_{7}{(x^2 - x+37)}}$$ = 1

$$\log_{7}{(x^2 - x+37)}$$ = $$2$$

$$(x^2 - x+37)$$ = $$7^{2}$$

Given eq. can be reduced to $$x^2 - x + 37 = 49$$

So x can be either -3 or 4.

Video Solution

video

Create a FREE account and get:

  • All Quant CAT complete Formulas and shortcuts PDF
  • 38+ CAT previous year papers with video solutions PDF
  • 5000+ Topic-wise Previous year CAT Solved Questions for Free

cracku

Boost your Prep!

Download App