If $$\sqrt{5x+9} + \sqrt{5x - 9} = 3(2 + \sqrt{2})$$, then $$\sqrt{10x+9}$$ is equal to
Given, $$\sqrt{5x+9} + \sqrt{5x - 9} = 3(2 + \sqrt{2})$$
=> $$\sqrt{\ 5x+9}+\sqrt{\ 5x-9}=6+3\sqrt{\ 2}$$
=> $$\sqrt{\ 5x+9}+\sqrt{\ 5x-9}=\sqrt{\ 36}+\sqrt{\ 18}$$
Comparing the L.H.S. and R.H.S.
=> $$5x+9=36\ $$ => $$5x=27$$ => $$x=\dfrac{27}{5}$$ (can be verified using the second term as well).
=> $$\sqrt{10x+9}$$ = $$\sqrt{\left(10\times\dfrac{27}{5}\right)+9}$$ = $$\sqrt{\ 63}=3\sqrt{\ 7}$$
Create a FREE account and get: