The number of integer solutions of the equation $$\left(x^{2} - 10\right)^{\left(x^{2}- 3x- 10\right)} = 1$$ is
Correct Answer: 4
Case 1: When $$x^2-3x-10=0$$ and $$x^2-10\ne\ 0$$
$$x^2-3x-10=0\ $$or, $$(x-5)(x+2) = 0$$
or, x= 5 or -2
Case 2: $$x^2-10=1$$
$$x^2-11=0$$
No integer solutions
Case 3: $$x^2-10=-1\ and\ x^2-3x-10\ is\ even$$
$$x^2-9=0$$
or, (x+3)(x-3)=0
or, x= -3 and 3
for x= -3 and +3 $$x^2-3x-10$$ is even
In total 4 values of x satisfy the equations
Create a FREE account and get: