For a real number x, if $$\frac{1}{2}, \frac{\log_3(2^x - 9)}{\log_3 4}$$, and $$\frac{\log_5\left(2^x + \frac{17}{2}\right)}{\log_5 4}$$ are in an arithmetic progression, then the common difference is
It is given that $$\frac{1}{2}, \frac{\log_3(2^x - 9)}{\log_3 4}$$, and $$\frac{\log_5\left(2^x + \frac{17}{2}\right)}{\log_5 4}$$ are in an arithmetic progression.
$$\frac{\log_3(2^x-9)}{\log_34}$$ can be written as $$\log_4\left(2^x-9\right)$$, and $$\frac{\log_5\left(2^x + \frac{17}{2}\right)}{\log_5 4}$$ can be written as $$\log_4\left(2^x+\frac{17}{2}\right)$$
Hence, $$2\log_4\left(2^x-9\right)=\frac{1}{2}+\log_4\left(2^x+\frac{17}{2}\right)$$
$$\frac{1}{2}$$ can be written as $$\log_42$$.
Therefore,
=> $$2\log_4\left(2^x-9\right)=\log_42+\log_4\left(2^x+\frac{17}{2}\right)$$
=> $$\log_4\left(2^x-9\right)^{^2}=\log_42\left(2^x+\frac{17}{2}\right)$$
=> $$\left(2^x-9\right)^{^2}=2\left(2^x+\frac{17}{2}\right)$$
=> $$2^{2x}-18\cdot2^x+81=2\cdot2^x+17$$
=> $$2^{2x}-20\cdot2^x+64=0$$
=> $$2^{2x}-16\cdot2^x-4\cdot2^x+64=0$$
=> $$2^x\left(2^x-16\right)-4\left(2^x-16\right)=0$$
=> $$\left(2^x-4\right)\left(2^x-16\right)=0$$
The values of $$2^x$$ can't be 4 (log will be undefined), which implies The value of $$2^x$$ is 16.
Therefore, the common difference is $$\log_4\left(2^x-9\right)-\log_42$$
=> $$\log_47-\log_42\ =\ \log_4\left(\frac{7}{2}\right)$$
The correct option is D
Create a FREE account and get: