Question 49

Trains A and B start traveling at the same time towards each other with constant speeds from stations X and Y, respectively. Train A reaches station Y in 10 minutes while train B takes 9 minutes to reach station X after meeting train A. Then the total time taken, in minutes, by train B to travel from station Y to station X is

Solution

M - First meeting point

Let the speeds of trains A and B be 'a' and 'b', respectively.

$$\frac{x}{a}=\ \frac{\ D-x}{b}$$

It is given,

$$\frac{D}{a}=10$$ and $$\frac{x}{b}=9$$

$$\frac{x}{\frac{D}{10}}=\ \frac{\ D-x}{\frac{x}{9}}$$

$$\frac{10x}{D}=\ \frac{\ 9D-9x}{x}$$

$$10x^2=\ \ 9D^2-9Dx$$

$$10x^2+9Dx-9D^2=\ 0$$

Solving, we get $$x=\frac{3D}{5}$$

$$\frac{x}{b}=9$$

$$\frac{3D}{b\times5}=9$$

$$\frac{D}{b}=15$$ 

The total time taken by train B to travel from station Y to station X is 15 minutes.

The answer is option B

Video Solution

video

Create a FREE account and get:

  • All Quant CAT complete Formulas and shortcuts PDF
  • 38+ CAT previous year papers with video solutions PDF
  • 5000+ Topic-wise Previous year CAT Solved Questions for Free

Related Formulas With Tests

cracku

Boost your Prep!

Download App