A quadratic equation $$x^2 + bx + c = 0$$ has two real roots. If the difference between the reciprocals of the roots is $$\frac{1}{3}$$, and the sum of the reciprocals of the squares of the roots is $$\frac{5}{9}$$, then the largest possible value of $$(b + c)$$ is
Correct Answer: 9
It is given thatĀ $$x^2 + bx + c = 0$$ has two real roots. Let the roots of the equation beĀ $$\alpha\ ,\beta\ $$. ($$\alpha\ \ >\ \beta\ $$)
Then, we can say thatĀ $$\frac{1}{\alpha\ }-\frac{1}{\beta\ }=\frac{1}{3}$$ .... Eq(1)
Similarly,Ā $$\frac{1}{\alpha\ ^2}+\frac{1}{\beta^2\ }=\frac{5}{9}$$ .... Eq (2)
Eq(2) can be written asĀ $$\left(\frac{1}{\alpha\ }-\frac{1}{\beta\ }\right)^{^2}+2\cdot\frac{1}{\alpha\ }\cdot\frac{1}{\beta\ }=\frac{5}{9}$$
=>Ā $$\left(\frac{1}{3}\right)^{^2}+2\cdot\frac{1}{\alpha\ }\cdot\frac{1}{\beta\ }=\frac{5}{9}$$
=>Ā $$\frac{2}{\alpha\ \cdot\beta\ }=\frac{4}{9}=>\ \frac{1}{\alpha\ \cdot\beta\ }=\frac{2}{9}$$
=>Ā $$\alpha\ \cdot\beta\ =\frac{9}{2}$$
We know that the product of the roots is equal to c, which implies$$c=\frac{9}{2}$$
We also know that the sum of the roots is equal to -b.Ā
=> $$\frac{1}{\alpha\ ^2}+\frac{1}{\beta\ ^2}=\left(\frac{1}{\alpha\ }+\frac{1}{\beta\ }\right)^{^2}-\frac{2}{\alpha\ \beta\ }=\frac{5}{9}$$
=>Ā $$\left(\ \frac{\ \alpha\ +\beta\ }{\alpha\ \beta\ }\right)^{^2}-\frac{4}{9}=\frac{5}{9}$$
=> $$\left(\ \frac{\ \alpha\ +\beta\ }{\alpha\ \beta\ }\right)^{^2}=\left(1\right)^2$$
=>Ā $$\alpha\ +\beta\ \ =\ \pm\ \alpha\ \beta\ $$
Hence, the maximum value of b isĀ $$\frac{9}{2}$$.
Hence, the maximum value of (b+c) is 9
Create a FREE account and get: