Find the value of x from the following equation:
$$\log_{10}{3}+\log_{10}(4x+1)=\log_{10}(x+1)+1$$
$$\log_{10}{3}+\log_{10}(4x+1)=\log_{10}(x+1)+1$$ can be written as
$$\log_{10}{3}+\log_{10}(4x+1)=\log_{10}(x+1)+\log_{10}{10}$$
We know that $$\log_{10}{a}+\log_{10}{b}=\log_{10}{ab}$$
$$\log_{10}{3*(4x+1)}=\log_{10}{(x+1)*10}$$
$$12x+3=10x+10$$
$$x=7/2$$. Hence, option B is the correct answer.Â
Create a FREE account and get: