Question 51

If Y is a negative number such that $$2^{Y^2({\log_{3}{5})}}=5^{\log_{2}{3}}$$, then Y equals to:

Solution

$$2^{Y^2({\log_{3}{5})}}=5^{Y^2(\log_3 2)}$$

Given, $$5^{Y^2\left(\log_32\right)}=5^{\left(\log_23\right)}$$

=> $$Y^2\left(\log_32\right)=\left(\log_23\right)=>Y^2=\left(\log_23\right)^2$$

=>$$Y=\left(-\log_23\right)^{\ }or\ \left(\log_23\right)$$

since Y is a negative number, Y=$$\left(-\log_23\right)=\left(\log_2\frac{1}{3}\right)$$

Video Solution

video

Create a FREE account and get:

  • All Quant CAT complete Formulas and shortcuts PDF
  • 35+ CAT previous year papers with video solutions PDF
  • 5000+ Topic-wise Previous year CAT Solved Questions for Free

Related Formulas With Tests

cracku

Boost your Prep!

Download App