If Y is a negative number such that $$2^{Y^2({\log_{3}{5})}}=5^{\log_{2}{3}}$$, then Y equals to:
$$2^{Y^2({\log_{3}{5})}}=5^{Y^2(\log_3 2)}$$
Given, $$5^{Y^2\left(\log_32\right)}=5^{\left(\log_23\right)}$$
=> $$Y^2\left(\log_32\right)=\left(\log_23\right)=>Y^2=\left(\log_23\right)^2$$
=>$$Y=\left(-\log_23\right)^{\ }or\ \left(\log_23\right)$$
since Y is a negative number, Y=$$\left(-\log_23\right)=\left(\log_2\frac{1}{3}\right)$$
Create a FREE account and get: