$$ (1 + \tan^2 \theta) + (1 + ( \tan^2 \theta)^{-1})$$ = k
= where θ is replaced by x
use this identity to solve this problem tanx = $$\frac{sinx}{cosx}$$
from the question
= (1+$$\frac{sin^2x}{cos^2x}$$) + (1+$$\frac{1}{tan^2x}$$) = k
= ($$\frac{cos^2x+sin^2x}{cos^2x}$$)+(1+$$\frac{1}{sin^2x÷cos^2x}$$) = k
= use this trigonometric identity $$\cos^2 \theta + \sin^2 \theta$$ = 1
= ($$\frac{1}{cos^2x}$$) + (1+$$\frac{cos^2x}{sin^2x}$$) = k
= ($$\frac{1}{cos^2x}$$) + ($$\frac{sin^2x+cos^2x}{sin^2x}$$) = k
= ($$\frac{1}{cos^2x}$$) + ($$\frac{1}{sin^2x}$$) take the order of this then
= on further simplification it becomes
= ($$\frac{cos^2x+sin^2x}{cos^2x × sin^2x}$$) = k
= ($$\frac{1}{cos^2x × sin^2x}$$) = k
we need to find √k hence after squaring we get = $$\frac{1}{cosx × sinx}$$
where $$\frac{1}{cosx}$$ = secx AND $$\frac{1}{sinx}$$ = cosecx from the trigonometric inverse functions
Hence the solution is cosecx secx
Create a FREE account and get: