If $$\cosec \theta = \frac{13}{12}, then \sin \theta + \cos \theta - \tan \theta$$ is equal to:
$$\cosec \theta =\frac{H}{P}= \frac{13}{12}$$
H= 13, P= 12, B= 5 (We know that $$hypotnuse^2 = side^2 + side^2. So we will get B = 5$$
$$\sin \theta + \cos \theta - \tan \theta$$
$$\frac{P}{H}+\frac{B}{H}-\frac{P}{B}$$
$$\frac{12}{13}+\frac{5}{13}-\frac{12}{5}=-\frac{71}{65}$$
Create a FREE account and get: