Question 52

If $$\cosec \theta = \frac{13}{12},  then  \sin \theta + \cos \theta - \tan \theta$$ is equal to:

Solution

$$\cosec \theta =\frac{H}{P}= \frac{13}{12}$$

H= 13, P= 12, B= 5 (We know that $$hypotnuse^2 = side^2 + side^2.  So we will get  B = 5$$

$$\sin \theta + \cos \theta - \tan \theta$$

$$\frac{P}{H}+\frac{B}{H}-\frac{P}{B}$$

$$\frac{12}{13}+\frac{5}{13}-\frac{12}{5}=-\frac{71}{65}$$


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App