Question 52

Two ships meet mid-ocean, and then, one ship goes south and the other ship goes west, both travelling at constant speeds. Two hours later, they are 60 km apart. If the speed of one of the ships is 6 km per hour more than the other one, then the speed, in km per hour, of the slower ship is

Solution

Let the speeds of two ships be 'x' and 'x+6' km per hour

Distance covered in 2 hours will be 2x and 2x+12

It is given,

$$\left(2x\right)^2+\left(2x+12\right)^2=60^2$$

$$\left(x\right)^2+\left(x+6\right)^2=30^2$$

$$2x^2+12x+36=900$$

$$x^2+6x+18=450$$

$$x^2+6x-432=0$$

Solving, we get x = 18

The speed of slower ship is 18 kmph

The answer is option C.

Video Solution

video

Create a FREE account and get:

  • All Quant CAT complete Formulas and shortcuts PDF
  • 38+ CAT previous year papers with video solutions PDF
  • 5000+ Topic-wise Previous year CAT Solved Questions for Free

cracku

Boost your Prep!

Download App