Question 53

If x satisfies the inequality $$|x - 1| + |x - 2| + |x - 3| \geq 6$$, then:

Solution

Given that  $$|x - 1| + |x - 2| + |x - 3| \geq 6$$.

Case 1: When x > 3

$$(x - 1) + (x - 2) + (x - 3) \geq 6$$

$$x \geq 4$$

Therefore, the value of x $$\in$$ [4, $$\infty$$) 

Case 2: When 2 < x < 3

$$(x - 1) + (x - 2) - (x - 3) \geq 6$$

$$x \geq 6$$

Therefore, no possible value of x in this domain.

Case 3: When 1 < x < 2

$$(x - 1) - (x - 2) - (x - 3) \geq 6$$

$$x \leq -2$$

Therefore, no possible value of x in this domain.

Case 3: When x < 1

$$-(x - 1) - (x - 2) - (x - 3) \geq 6$$

$$x \leq 0$$

Therefore, the value of x $$\in$$ (-$$\infty$$, 0]

Therefore, the value of x that will satisfy this inequality: x $$\in$$ (-$$\infty$$, 0] $$\cup$$ [4, $$\infty$$).

Hence, option B is the correct answer.


Create a FREE account and get:

  • All Quant Formulas and shortcuts PDF
  • 170+ previous papers with solutions PDF
  • Top 5000+ MBA exam Solved Questions for Free

Related Formulas With Tests

cracku

Boost your Prep!

Download App