Question 53

In $$\triangle$$ABC with sides 6 cm, 7 cm and 8 cm,the angle bisector of the largest angle divides the opposite side into two segments. What is the length of the shorter segment?

Solution

As per the given in the question,

AB=6cm, BC=8cm and CA=7cm

AD is the angle bisector of $$\angle$$ BAC

As per the angular bisector theorem,

$$\Rightarrow \dfrac{BD}{DC}=\dfrac{AB}{AC}$$,

Now, substituting the values,

$$\Rightarrow \dfrac{BD}{DC}=\dfrac{6}{7}$$,

Let, 

$$\Rightarrow \dfrac{BD}{DC}=\dfrac{6}{7}=k$$,

So, BD=6k and DC=7k

It is given that, $$BC=8cm =BD+DC$$

$$\Rightarrow 6k+7k=8$$

$$\Rightarrow 13k=8$$

$$\Rightarrow k=\dfrac{8}{13}$$

Hence, $$BD=\dfrac{8}{13}\times 6=\dfrac{48}{13}$$

And, $$DC=\dfrac{8}{13}\times 7=\dfrac{56}{13}$$

Hence the required answer is $$=\dfrac{48}{13}$$


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App