Sign in
Please select an account to continue using cracku.in
↓ →
If $$12x^2 - 21x + 1 = 0, $$ then what is the value of $$9x^2 + (16x^2)^{-1}$$?
$$12x^2 - 21x + 1 = 0 $$
Divide by 4x,
$$3x - 21/4 + 1/4x = 0 $$
$$3x + \frac{1}{4x} = \frac{21}{4}$$
On taking square,
$$(3x + \frac{1}{4x})^2 = (\frac{21}{4})^2$$
$$9x^2 + \frac{1}{16x^2} + 2.3x.\frac{1}{4x} = \frac{441}{16}$$
$$9x^2 + \frac{1}{16x^2} = \frac{441}{16} - \frac{3}{2}$$
$$9x^2 + \frac{1}{16x^2} = \frac{417}{16}$$
Create a FREE account and get: