Sign in
Please select an account to continue using cracku.in
↓ →
Let $$f'(x) = \frac{192x^3}{2 + \sin^4 \pi x}$$ for all $$x \in R$$ with $$f\left(\frac{1}{2}\right) = 0$$. If $$m \leq \int_{\frac{1}{2}}^{1} f(x) dx \leq M,$$ then the possible values of m and M are
Create a FREE account and get: