If the ratio of the angle bisector segments of the two equiangular triangles are in the ratio of 3:2 then what is the ratio of the corresponding sides of the two triangles?
Given : $$AD:PS=3:2$$
To find : $$AB : PQ=?$$
Solution : The given triangles are equiangular, i.e. $$\angle$$ A = $$\angle$$ P , $$\angle$$ B = $$\angle$$ Q , $$\angle$$ C = $$\angle$$ R
Now, in $$\triangle$$ ABD and $$\triangle$$ PQS,
$$\angle$$Â B =Â $$\angle$$Â Q
$$\angle$$Â BAD =Â $$\angle$$Â QPS Â Â [$$\because$$ $$\angle$$Â A = $$\angle$$Â P => $$\frac{1}{2}$$ $$\angle$$ A = $$\frac{1}{2}$$ $$\angle$$ P =>Â $$\angle$$Â BAD =Â $$\angle$$Â QPS]
So, by A-A criterion of similarity, we have :
$$\triangle$$ ABD $$\sim$$ $$\triangle$$ PQS
=> $$\frac{AB}{PQ}=\frac{AD}{PS}=\frac{3}{2}$$
=> Ans - (B)
Create a FREE account and get: