The value $$\cosec(67^\circ + \theta) - \sec(23^\circ - \theta) + \cos 15^\circ \cos 35^\circ \cos 55^\circ \cos 60^\circ \cos 75^\circ$$ is:
$$\cosec(67^\circ + \theta) - \sec(23^\circ - \theta) + \cos 15^\circ \cos 35^\circ \cos 55^\circ \cos 60^\circ \cos 75^\circ$$
=Â $$\cosec(67^\circ + \theta) - \sec(90 -Â 67^\circ + \theta) + \cos 15^\circ \cos 35^\circ \cos (90 -Â 35^\circ) \cos 60^\circ \cos(90 -Â 15^\circ)$$
= $$\cosec(67^\circ + \theta) - \cosec(67^\circ + \theta) + \cos 15^\circ \cos 35^\circ \sec 35^\circ \cos 60^\circ \sec 15^\circ$$
= $$\cos 60^\circ$$
= $$\frac{1}{2}$$
Create a FREE account and get: