$$\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{b}}=0$$, then the value of $$\frac{1}{a}+\frac{1}{b}$$ isÂ
Given : $$\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{b}}=0$$
Squaring both sides, we get :
=>Â $$(\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{b}})^2=0$$
=> $$(\frac{1}{\sqrt{a}})^2+(\frac{1}{\sqrt{b}})^2-2(\frac{1}{\sqrt{a}})(\frac{1}{\sqrt{b}})=0$$
=> $$\frac{1}{a}+\frac{1}{b}-\frac{2}{\sqrt{a}\sqrt{b}}=0$$
=> $$\frac{1}{a}+\frac{1}{b}=\frac{2}{\sqrt{ab}}$$
=> Ans - (C)
Create a FREE account and get: