Question 60

$$\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{b}}=0$$, then the value of $$\frac{1}{a}+\frac{1}{b}$$ is 

Solution

Given : $$\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{b}}=0$$

Squaring both sides, we get :

=> $$(\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{b}})^2=0$$

=> $$(\frac{1}{\sqrt{a}})^2+(\frac{1}{\sqrt{b}})^2-2(\frac{1}{\sqrt{a}})(\frac{1}{\sqrt{b}})=0$$

=> $$\frac{1}{a}+\frac{1}{b}-\frac{2}{\sqrt{a}\sqrt{b}}=0$$

=> $$\frac{1}{a}+\frac{1}{b}=\frac{2}{\sqrt{ab}}$$

=> Ans - (C)


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App