If $$3x = \sec A$$ and $$\frac{3}{x}=\tan A$$ then $$\left(x^{2} - \frac{1}{x^{2}}\right)$$ is _____________.
This is a previous year paper question, the given answer is option c(1). But it is wrong.
Given $$3x=\sec A\ \Rightarrow x=\frac{\sec A}{3}$$
$$\frac{1}{x}=\frac{\tan A}{3}$$
$$\left(x^{2} - \frac{1}{x^{2}}\right)$$
On substituting the values of x and 1/x in the equation.
We know $$sec A^2-\tan A^2$$=1
$$\left(\left(\frac{\sec A}{3}\right)^2-\left(\frac{\tan A}{3}\right)^2\right)=\frac{1}{9}\left(\sec A^2-\tan A^2\right)=\frac{1}{9}$$So, the answer is 1/9.
Create a FREE account and get: