If $$5 - \log_{10}\sqrt{1 + x} + 4 \log_{10} \sqrt{1 - x} = \log_{10} \frac{1}{\sqrt{1 - x^2}}$$, then 100x equals
Correct Answer: 99
$$5 - \log_{10}\sqrt{1 + x} + 4 \log_{10} \sqrt{1 - x} = \log_{10} \frac{1}{\sqrt{1 - x^2}}$$
We can re-write the equation as: $$5-\log_{10}\sqrt{1+x}+4\log_{10}\sqrt{1-x}=\log_{10}\left(\sqrt{1+x}\times\ \sqrt{1-x}\right)^{-1}$$
$$5-\log_{10}\sqrt{1+x}+4\log_{10}\sqrt{1-x}=\left(-1\right)\log_{10}\left(\sqrt{1+x}\right)+\left(-1\right)\log_{10}\left(\sqrt{1-x}\right)$$
$$5=-\log_{10}\sqrt{1+x}+\log_{10}\sqrt{1+x}-\log_{10}\sqrt{1-x}-4\log_{10}\sqrt{1-x}$$
$$5=-5\log_{10}\sqrt{1-x}$$
$$\sqrt{1-x}=\frac{1}{10}$$
Squaring both sides: $$\left(\sqrt{1-x}\right)^2=\frac{1}{100}$$
$$\therefore\ $$ $$x=1-\frac{1}{100}=\frac{99}{100}$$
Hence, $$100\ x\ =100\times\ \frac{99}{100}=99$$
Create a FREE account and get: